|
Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 126, Pages 150–159
(Mi znsl4202)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Designs for calculating the spectral multiplicity of orthogonal sums
N. K. Nikol'skii
Abstract:
Let $A$ and $B$ be operators in spaces $X$ and $Y$ respectively and suppose that $B$ has a “rich” system of sets $\Delta$, $\Delta\subset\mathbb C$ with $Y(\Delta)$ dense in $Y$, where $Y(\Delta)=\{y\in Y:\|p(B)y\|\leqslant C_y\sup_\Delta|p|\text{ for any complex polynomial }p\}$. Then $\mu_{A\oplus B}=\max(\mu_A, \mu_B)=\mu_A$ ($\mu_A$ denotes the spectral multiplicity of an operator $A$ i. e. the number $\min\{\dim L:\operatorname{span}(A^nL:n\geqslant0)=X\}$). For example, if $B$ is a Toeplitz operator $T\bar g$ with $g\in H^\infty$, $g\not\equiv\mathrm{const}$ and if, moreover, $g(\mathbb D)\setminus\text {\{polynomially convex hull of the spectrum of }A\}\ne\varnothing$ then $\mu_{A\oplus T\bar g}=\mu_A$. To the contrary, if $A=T_f$ with $f\in H^\infty$ and $g(\mathbb D)\subset f(\mathbb D)$ then (under some additional regularity assumptions on $f$) we have $\mu_{Tf\oplus Tg}=\mu_{Tf}+\mu_{Tg}$. We give also some examples of univalent and essentially univalent functions $f$ $(f\in H^\infty)$ with $\mu_{Tf}>1$.
Citation:
N. K. Nikol'skii, “Designs for calculating the spectral multiplicity of orthogonal sums”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, "Nauka", Leningrad. Otdel., Leningrad, 1983, 150–159
Linking options:
https://www.mathnet.ru/eng/znsl4202 https://www.mathnet.ru/eng/znsl/v126/p150
|
Statistics & downloads: |
Abstract page: | 175 | Full-text PDF : | 55 |
|