Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 126, Pages 150–159 (Mi znsl4202)  

This article is cited in 2 scientific papers (total in 2 papers)

Designs for calculating the spectral multiplicity of orthogonal sums

N. K. Nikol'skii
Full-text PDF (541 kB) Citations (2)
Abstract: Let $A$ and $B$ be operators in spaces $X$ and $Y$ respectively and suppose that $B$ has a “rich” system of sets $\Delta$, $\Delta\subset\mathbb C$ with $Y(\Delta)$ dense in $Y$, where $Y(\Delta)=\{y\in Y:\|p(B)y\|\leqslant C_y\sup_\Delta|p|\text{ for any complex polynomial }p\}$. Then $\mu_{A\oplus B}=\max(\mu_A, \mu_B)=\mu_A$ ($\mu_A$ denotes the spectral multiplicity of an operator $A$ i. e. the number $\min\{\dim L:\operatorname{span}(A^nL:n\geqslant0)=X\}$). For example, if $B$ is a Toeplitz operator $T\bar g$ with $g\in H^\infty$, $g\not\equiv\mathrm{const}$ and if, moreover, $g(\mathbb D)\setminus\text {\{polynomially convex hull of the spectrum of }A\}\ne\varnothing$ then $\mu_{A\oplus T\bar g}=\mu_A$. To the contrary, if $A=T_f$ with $f\in H^\infty$ and $g(\mathbb D)\subset f(\mathbb D)$ then (under some additional regularity assumptions on $f$) we have $\mu_{Tf\oplus Tg}=\mu_{Tf}+\mu_{Tg}$. We give also some examples of univalent and essentially univalent functions $f$ $(f\in H^\infty)$ with $\mu_{Tf}>1$.
Bibliographic databases:
Document Type: Article
UDC: 513.88+517.5
Language: Russian
Citation: N. K. Nikol'skii, “Designs for calculating the spectral multiplicity of orthogonal sums”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, "Nauka", Leningrad. Otdel., Leningrad, 1983, 150–159
Citation in format AMSBIB
\Bibitem{Nik83}
\by N.~K.~Nikol'skii
\paper Designs for calculating the spectral multiplicity of orthogonal sums
\inbook Investigations on linear operators and function theory. Part~XII
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 126
\pages 150--159
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4202}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=697434}
Linking options:
  • https://www.mathnet.ru/eng/znsl4202
  • https://www.mathnet.ru/eng/znsl/v126/p150
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024