Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 126, Pages 109–116 (Mi znsl4198)  

This article is cited in 1 scientific paper (total in 1 paper)

Projections onto the set of Hankel matrices

S. V. Kislyakov
Full-text PDF (396 kB) Citations (1)
Abstract: The article is devoted to the estimates from below of the norms of projections onto the set of $(n\times n)$ Hankel matrices. Let $B_N$ be the set of operators $T\sim\{t_{jk}\}_{j, k\geqslant0}$ on $l^2$ such that $t_{jk}=0$ for $k+j>N$ and $\mathrm{Hank}_N$ be the subspace of $B_N$ consisting of those operators $T$ for which $t_{jk}=c_{j+k}$ (Hankel matrices). The numbers $\alpha_N$ are defined as the infimum of the norms of projections from $B_N$ onto$\mathrm{Hank}_N$. The main result of the article claims that $c_1\left(\frac{\log N}{\log\log N}\right)^{1/2}\leqslant\alpha_N\leqslant c_2(\log N)^{1/2}$.
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. V. Kislyakov, “Projections onto the set of Hankel matrices”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, "Nauka", Leningrad. Otdel., Leningrad, 1983, 109–116
Citation in format AMSBIB
\Bibitem{Kis83}
\by S.~V.~Kislyakov
\paper Projections onto the set of Hankel matrices
\inbook Investigations on linear operators and function theory. Part~XII
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 126
\pages 109--116
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4198}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=697430}
\zmath{https://zbmath.org/?q=an:0513.47020}
Linking options:
  • https://www.mathnet.ru/eng/znsl4198
  • https://www.mathnet.ru/eng/znsl/v126/p109
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024