|
Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 126, Pages 97–108
(Mi znsl4197)
|
|
|
|
Щхе existence Fragmen–Lindelof function and some conditions of quasi-analyticity
P. P. Kargaev
Abstract:
Let $E\subset\mathbb R^n$, $E=\bar E$, $\Omega=\mathbb R^{n+1}\setminus E$. Positive harmonic functions in $\Omega$ vanishing on $E$, form the cone $\mathcal P_E$. It is known, that $1\leqslant\dim\mathcal P_E\leqslant2$. It is proved, that $\int_{\mathbb R^n}\frac{\rho(x, E)}{(1+x^2)^{\frac{n+1}2}}=+\infty\Rightarrow\dim \mathcal P_E=1$ ($\rho(x, E)=\inf_{t\in E}|x-t|$). The connection between $\dim\mathcal P_E$ and the existence of a non-zero measure on $E$ whose Fourier transform vanishes pn an interval is investigated. In the case $n=1$ it is proved, that $\int_{C_E}\frac{dt}{1+|t|}<+\infty\Rightarrow\dim \mathcal P_E=2$.
Citation:
P. P. Kargaev, “Щхе existence Fragmen–Lindelof function and some conditions of quasi-analyticity”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, "Nauka", Leningrad. Otdel., Leningrad, 1983, 97–108
Linking options:
https://www.mathnet.ru/eng/znsl4197 https://www.mathnet.ru/eng/znsl/v126/p97
|
Statistics & downloads: |
Abstract page: | 108 | Full-text PDF : | 63 |
|