Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 126, Pages 21–30 (Mi znsl4188)  

This article is cited in 7 scientific papers (total in 7 papers)

Compact operators with power-like asymptotics of singular numbers

M. Sh. Birman, M. Z. Solomyak
Full-text PDF (428 kB) Citations (7)
Abstract: For a compact operator $A$ $(A\in\Upsilon_\infty)$ in a Hilbert space let $s_n(A)$, $n=1,2,\dots$, be the singular numbers of $A$ and $N(s; A)=\operatorname{card} \{n\in\mathbb N: s_n(A)>s\}$, $s>0$. Denote, for $0<p<\infty$
\begin{gather*} \Sigma_p=\{A\in\Upsilon_\infty: N(s, A)=O(s^{-p}), s\to0\},\\ \Sigma_p^0=\{A\in\Sigma_p: N(s, A)=o(s^{-p})\},\quad\sigma_p=\Sigma_p\setminus\Sigma_p^0. \end{gather*}
The functionals $\Delta_p(A)=\limsup s^pN(s; A)$, $\delta_p(A)=\liminf s^pN(s; A)$, $s\to0$, finite for $A\in\Sigma_p$, depend on the class $a\in\sigma_p$ and not on an individual operator $A\in a$ (H. Weyl's lemma). So we may write $\Delta_p(a)$, $\delta_p(a)$, $a\in\sigma_p$. Some results for the functionals $\Delta_p$, $\delta_p$ (and similar functionals for positive and negative eigenvalues in the case $a=a^*=\{A^*:A\in a\}$) are obtained. In particular:
I. For $a_1, a_2\in\sigma_p$ $[\Delta_p(a_1+a_2)]^{\frac1{p+1}}\leqslant[\Delta_p(a_1)]^{\frac1{p+1}}+[\Delta_p(a_2)]^{\frac1{p+1}}$.
II. Let $a_1, a_2\in\sigma_p$, $a_1^*a_2=a_1a_2^*=0$, $\delta_p(a_i)=\Delta_p(a_i)$, $i=1, 2$. Then $\delta_p(a_1+a_2)=\Delta_p(a_1+a_2)=\Delta_p(a_1)+\Delta_p(a_2)$.
Bibliographic databases:
Document Type: Article
UDC: 513.88
Language: Russian
Citation: M. Sh. Birman, M. Z. Solomyak, “Compact operators with power-like asymptotics of singular numbers”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, "Nauka", Leningrad. Otdel., Leningrad, 1983, 21–30
Citation in format AMSBIB
\Bibitem{BirSol83}
\by M.~Sh.~Birman, M.~Z.~Solomyak
\paper Compact operators with power-like asymptotics of singular numbers
\inbook Investigations on linear operators and function theory. Part~XII
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 126
\pages 21--30
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4188}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=697420}
\zmath{https://zbmath.org/?q=an:0518.47014}
Linking options:
  • https://www.mathnet.ru/eng/znsl4188
  • https://www.mathnet.ru/eng/znsl/v126/p21
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:224
    Full-text PDF :93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024