|
Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 141, Pages 162–164
(Mi znsl4185)
|
|
|
|
A remark on interpolation in spaces of vector functions
V. V. Peller
Abstract:
Let B(H) be the space of bounded operators in a Hilbert space $H$, let $B_p^s(\gamma_p)$ be
the Besov class of functions, analytic in the unit circle $\mathbb D$ and taking values in the Schatten–von Neumann class $\gamma_p(H)$, and let $X=\mathbb P_+L^{\infty}(B(H))=\{\sum_{n\ge0}\hat{f}(n)z^n:f\in L^{\infty}(B(H))\}$. The fundamental result is that $(B_p^{1/p}(\gamma_p),X)_{\theta,q}=B_q^{1/q}(\gamma_q),\quad 1\le p<\infty,\quad 0<\theta<1,\quad q=\dfrac{p}{1-\theta}$.
Citation:
V. V. Peller, “A remark on interpolation in spaces of vector functions”, Investigations on linear operators and function theory. Part XIV, Zap. Nauchn. Sem. LOMI, 141, "Nauka", Leningrad. Otdel., Leningrad, 1985, 162–164; J. Soviet Math., 37:5 (1987), 1357–1358
Linking options:
https://www.mathnet.ru/eng/znsl4185 https://www.mathnet.ru/eng/znsl/v141/p162
|
Statistics & downloads: |
Abstract page: | 106 | Full-text PDF : | 41 |
|