Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 141, Pages 149–153 (Mi znsl4183)  

A constructive proof of the Chang-Marshall theorem

A. L. Vol'berg
Abstract: In the paper one gives constructive proofs (without the use of the space of maximal ideals of the algebra $H^{\infty}$) of the Marshall-Chang theorem and of a theorem of T. H. Wolff. These theorems are proved in the paper in a unique manner with the use of a lemma which connects the level lines of a positive harmonic function in a circle with the level lines of the inner function.
English version:
Journal of Soviet Mathematics, 1987, Volume 37, Issue 5, Pages 1350–1352
DOI: https://doi.org/10.1007/BF01327043
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. L. Vol'berg, “A constructive proof of the Chang-Marshall theorem”, Investigations on linear operators and function theory. Part XIV, Zap. Nauchn. Sem. LOMI, 141, "Nauka", Leningrad. Otdel., Leningrad, 1985, 149–153; J. Soviet Math., 37:5 (1987), 1350–1352
Citation in format AMSBIB
\Bibitem{Vol85}
\by A.~L.~Vol'berg
\paper A constructive proof of the Chang-Marshall theorem
\inbook Investigations on linear operators and function theory. Part~XIV
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 141
\pages 149--153
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4183}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=788894}
\zmath{https://zbmath.org/?q=an:0577.46057}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 37
\issue 5
\pages 1350--1352
\crossref{https://doi.org/10.1007/BF01327043}
Linking options:
  • https://www.mathnet.ru/eng/znsl4183
  • https://www.mathnet.ru/eng/znsl/v141/p149
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024