Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 126, Pages 7–14 (Mi znsl4179)  

Inner functions on the spaces of homogeneus type

A. B. Aleksandrov
Abstract: In the article the M. Hakim–N. Sibony–B. Low construction of inner functions in the unit ball of $\mathbb C^d$ is generalized to the space of homogenous type.
The main result of the paper is stated as follows. For every positive continuous function $H$ on the unit sphere $S$ of $\mathbb R^d$ there exists a function $u$ harmonic in the unit ball $B$ of $\mathbb R^d$ such that $\nabla u$ is bounded in $B$ and $|\nabla u|=H$ almost everywhere on $S$.
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: A. B. Aleksandrov, “Inner functions on the spaces of homogeneus type”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, "Nauka", Leningrad. Otdel., Leningrad, 1983, 7–14
Citation in format AMSBIB
\Bibitem{Ale83}
\by A.~B.~Aleksandrov
\paper Inner functions on the spaces of homogeneus type
\inbook Investigations on linear operators and function theory. Part~XII
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 126
\pages 7--14
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=697418}
Linking options:
  • https://www.mathnet.ru/eng/znsl4179
  • https://www.mathnet.ru/eng/znsl/v126/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024