Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 141, Pages 72–99 (Mi znsl4167)  

This article is cited in 1 scientific paper (total in 1 paper)

A constructive description of Hölder classes on closed Jordan curves

N. A. Shirokov
Full-text PDF (880 kB) Citations (1)
Abstract: Let $\Gamma$ be a closed, Jordan, rectifiable curve, whose are length is commensurable with its subtending chord, let $a\in\operatorname{int}\Gamma$, and $\mathcal {R}_n(a)$ be the set of rational functions of degree $le n$, having a pole perhaps only at the point $a.$ Let $\Lambda^{\alpha}(\Gamma)$, $0<\alpha<1,$ be the Hölder class on $\Gamma.$ One constructs a system of weights $\gamma_n(z)>0$ on $\Gamma$ such that $f\in\Lambda^{\alpha}(\Gamma)$ if and only if for any nonnegative integer $n$ there exists a function $R_n$, $R_n\in\mathcal {R}_n(a)$ such that $|f(z)-R_n(z)|\le c_f\cdot\gamma_n(z)$, $z\in\Gamma.$
It is proved that the weights $\gamma_n$ cannot be expressed simply in terms in terms of $\rho^+_{1/n}(z)$ and $\rho^-_{1/n}(z)$, the distances to the level lines of the moduli of the conformal mappings of $\operatorname{ext}\Gamma$ and $\operatorname{int}\Gamma$ on $\mathbb C\backslash\mathbb D.$
English version:
Journal of Mathematical Sciences, 1937, Volume 37, Issue 5, Pages 1306–1322
DOI: https://doi.org/10.1007/BF01327040
Bibliographic databases:
Document Type: Article
UDC: 517.537
Language: Russian
Citation: N. A. Shirokov, “A constructive description of Hölder classes on closed Jordan curves”, Investigations on linear operators and function theory. Part XIV, Zap. Nauchn. Sem. LOMI, 141, "Nauka", Leningrad. Otdel., Leningrad, 1985, 72–99; J. Math. Sci., 37:5 (1937), 1306–1322
Citation in format AMSBIB
\Bibitem{Shi85}
\by N.~A.~Shirokov
\paper A~constructive description of H\"older classes on closed Jordan curves
\inbook Investigations on linear operators and function theory. Part~XIV
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 141
\pages 72--99
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4167}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=788891}
\zmath{https://zbmath.org/?q=an:0613.30036}
\transl
\jour J. Math. Sci.
\yr 1937
\vol 37
\issue 5
\pages 1306--1322
\crossref{https://doi.org/10.1007/BF01327040}
Linking options:
  • https://www.mathnet.ru/eng/znsl4167
  • https://www.mathnet.ru/eng/znsl/v141/p72
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024