Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 123, Pages 203–207 (Mi znsl4146)  

This article is cited in 1 scientific paper (total in 1 paper)

On realizability of combinatorial types of convex polytopes over number fields

N. E. Mnev
Full-text PDF (328 kB) Citations (1)
Abstract: It is proved that the minimal subfield of the reals over which all real combinatorial types of convex polytopes may be realized is the field of all real algebrais numbers.
Bibliographic databases:
Document Type: Article
UDC: 513.34
Language: Russian
Citation: N. E. Mnev, “On realizability of combinatorial types of convex polytopes over number fields”, Differential geometry, Lie groups and mechanics. Part V, Zap. Nauchn. Sem. LOMI, 123, "Nauka", Leningrad. Otdel., Leningrad, 1983, 203–207
Citation in format AMSBIB
\Bibitem{Mne83}
\by N.~E.~Mnev
\paper On realizability of combinatorial types of convex polytopes over number fields
\inbook Differential geometry, Lie groups and mechanics. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 123
\pages 203--207
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4146}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=697253}
\zmath{https://zbmath.org/?q=an:0514.52004}
Linking options:
  • https://www.mathnet.ru/eng/znsl4146
  • https://www.mathnet.ru/eng/znsl/v123/p203
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024