|
Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 123, Pages 126–151
(Mi znsl4140)
|
|
|
|
This article is cited in 5 scientific papers (total in 6 papers)
The $K$-functOr (Grothndieck group) of the infinite symmetric group.
A. M. Vershik, S. V. Kerov
Abstract:
The Grothendieck group $K_0(\sigma_\infty)$ of the group $\sigma_\infty$ of finite permutations of a countable set is described. We also discribe all semifinite characters of this group and use them to determine the cone of true $K_+^0(\sigma_\infty)$ representations.
Citation:
A. M. Vershik, S. V. Kerov, “The $K$-functOr (Grothndieck group) of the infinite symmetric group.”, Differential geometry, Lie groups and mechanics. Part V, Zap. Nauchn. Sem. LOMI, 123, "Nauka", Leningrad. Otdel., Leningrad, 1983, 126–151
Linking options:
https://www.mathnet.ru/eng/znsl4140 https://www.mathnet.ru/eng/znsl/v123/p126
|
Statistics & downloads: |
Abstract page: | 193 | Full-text PDF : | 117 |
|