Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 123, Pages 46–57 (Mi znsl4133)  

Conditionally positively definite functions on locally compact groups and the Levy–Khinchin formula

S. I. Karpushev
Abstract: The Levy–Khinchin formula for conditionally positively definite functions on compactly generated groups is proved. The proof is based on the Choquet's theory. Some examples and applications to 1-cohomology of unitary representations of locally compact groups are considered.
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: S. I. Karpushev, “Conditionally positively definite functions on locally compact groups and the Levy–Khinchin formula”, Differential geometry, Lie groups and mechanics. Part V, Zap. Nauchn. Sem. LOMI, 123, "Nauka", Leningrad. Otdel., Leningrad, 1983, 46–57
Citation in format AMSBIB
\Bibitem{Kar83}
\by S.~I.~Karpushev
\paper Conditionally positively definite functions on locally compact groups and the Levy--Khinchin formula
\inbook Differential geometry, Lie groups and mechanics. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 123
\pages 46--57
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=697240}
\zmath{https://zbmath.org/?q=an:0509.43003}
Linking options:
  • https://www.mathnet.ru/eng/znsl4133
  • https://www.mathnet.ru/eng/znsl/v123/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024