Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 123, Pages 3–35 (Mi znsl4131)  

This article is cited in 4 scientific papers (total in 5 papers)

Infinite dimensional metagonal and metaplictie groups I. The general notions and the metagonal group

A. M. Vershik
Abstract: She groups in question are central extensions by $S^1$ of groups of orthogonal and symplectic operators with Hilbert-Schmidt antilinear part acting in a Hilbert space. A thorough study of the corresponding 2-coeycles on their Lie algebras is presented. A limiting procedure relating the infinite dimensional groups with the corresponding finite dimensional ones is exhibited. Central extensions in the former case are shown to be nontrivial even on the topological level. Possible applications include unified models of the basic moduli for the Kac–Moody Lie algebras.
Bibliographic databases:
Document Type: Article
UDC: 519.46
Language: Russian
Citation: A. M. Vershik, “Infinite dimensional metagonal and metaplictie groups I. The general notions and the metagonal group”, Differential geometry, Lie groups and mechanics. Part V, Zap. Nauchn. Sem. LOMI, 123, "Nauka", Leningrad. Otdel., Leningrad, 1983, 3–35
Citation in format AMSBIB
\Bibitem{Ver83}
\by A.~M.~Vershik
\paper Infinite dimensional metagonal and metaplictie groups I. The general notions and the metagonal group
\inbook Differential geometry, Lie groups and mechanics. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 123
\pages 3--35
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=697238}
\zmath{https://zbmath.org/?q=an:0511.22008}
Linking options:
  • https://www.mathnet.ru/eng/znsl4131
  • https://www.mathnet.ru/eng/znsl/v123/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024