|
Zapiski Nauchnykh Seminarov POMI, 2011, Volume 389, Pages 232–251
(Mi znsl4127)
|
|
|
|
New correction theorems in the light of a weighted Littlewood–Paley–Rubio de Francia inequality
D. M. Stolyarov Saint-Petersburg State University, Saint-Petersburg, Russia
Abstract:
We prove the following correction theorem: every function $f$ on the circumference $\mathbb T$ that is bounded by an $\alpha_1$-weight $w$ (this means that $Mw^2\le Cw^2$) can be modified on a set $e$ with $\int_ew<\varepsilon$ so that the quadratic function built up from $f$ with the help of an arbitary sequence of nonintersecting intervals in $\mathbb Z$ will not exceed $C\log(\frac1\varepsilon)w$.
Key words and phrases:
quadratic function, correction theorem, Muckenhoupt condition.
Received: 01.03.2011
Citation:
D. M. Stolyarov, “New correction theorems in the light of a weighted Littlewood–Paley–Rubio de Francia inequality”, Investigations on linear operators and function theory. Part 39, Zap. Nauchn. Sem. POMI, 389, POMI, St. Petersburg, 2011, 232–251; J. Math. Sci. (N. Y.), 182:5 (2012), 714–723
Linking options:
https://www.mathnet.ru/eng/znsl4127 https://www.mathnet.ru/eng/znsl/v389/p232
|
Statistics & downloads: |
Abstract page: | 304 | Full-text PDF : | 96 | References: | 53 |
|