Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 389, Pages 191–205 (Mi znsl4125)  

This article is cited in 3 scientific papers (total in 3 papers)

On the definition of $B$-points of a Borel charge on the real line

P. A. Mozolyako

Saint-Petersburg State University, Saint-Petersburg, Russia
Full-text PDF (601 kB) Citations (3)
References:
Abstract: Let $\mu$ be a Borel charge (i.e., a real Borel measure) on $\mathbb R$, and let $P_{(y)}(t)=\frac y{\pi(y^2+t^2)}$, $y>0$, $t\in\mathbb R$, denote the Poisson kernel. Bourgain proved in [1,2] that for a nonnegative $\mu$ and for numerous $x\in\mathbb R$ the variation of the function $y\mapsto(\mu*P_{(y)})(x)$ on $(0,1]$ is finite. This is true in particular for the so-called $B$-points $x$ (see e.g., [4]). In the present article new descriptions of $B$-points are given adjusted to some applications of this notion.
Key words and phrases: vertical variation of a charge, Bourgain point, average variation of a charge.
Received: 20.06.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 182, Issue 5, Pages 690–698
DOI: https://doi.org/10.1007/s10958-012-0773-8
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: P. A. Mozolyako, “On the definition of $B$-points of a Borel charge on the real line”, Investigations on linear operators and function theory. Part 39, Zap. Nauchn. Sem. POMI, 389, POMI, St. Petersburg, 2011, 191–205; J. Math. Sci. (N. Y.), 182:5 (2012), 690–698
Citation in format AMSBIB
\Bibitem{Moz11}
\by P.~A.~Mozolyako
\paper On the definition of $B$-points of a~Borel charge on the real line
\inbook Investigations on linear operators and function theory. Part~39
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 389
\pages 191--205
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4125}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 182
\issue 5
\pages 690--698
\crossref{https://doi.org/10.1007/s10958-012-0773-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860370714}
Linking options:
  • https://www.mathnet.ru/eng/znsl4125
  • https://www.mathnet.ru/eng/znsl/v389/p191
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :62
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024