Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 389, Pages 131–142 (Mi znsl4122)  

This article is cited in 4 scientific papers (total in 4 papers)

On the uncertainty principle for Meyer wavelets

E. A. Lebedeva

Saint-Petersburg State Polytechnical University, Saint-Petersburg, Russia
Full-text PDF (583 kB) Citations (4)
References:
Abstract: A sequence of Meyer wavelets is constructed. This sequence approximates uniformly the Meyer wavelet with the smallest uncertainty constant.
Key words and phrases: Meyer wavelet, uncertainty constant, spline, convex variational problem.
Received: 28.04.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 182, Issue 5, Pages 656–662
DOI: https://doi.org/10.1007/s10958-012-0770-y
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.972
Language: Russian
Citation: E. A. Lebedeva, “On the uncertainty principle for Meyer wavelets”, Investigations on linear operators and function theory. Part 39, Zap. Nauchn. Sem. POMI, 389, POMI, St. Petersburg, 2011, 131–142; J. Math. Sci. (N. Y.), 182:5 (2012), 656–662
Citation in format AMSBIB
\Bibitem{Leb11}
\by E.~A.~Lebedeva
\paper On the uncertainty principle for Meyer wavelets
\inbook Investigations on linear operators and function theory. Part~39
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 389
\pages 131--142
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4122}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 182
\issue 5
\pages 656--662
\crossref{https://doi.org/10.1007/s10958-012-0770-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860372905}
Linking options:
  • https://www.mathnet.ru/eng/znsl4122
  • https://www.mathnet.ru/eng/znsl/v389/p131
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :75
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024