Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 389, Pages 101–112 (Mi znsl4120)  

This article is cited in 1 scientific paper (total in 1 paper)

Application of a Bernstein-type inequality to rational interpolation in the Dirichlet space

R. Zarouf

CMI-LATP, UMR 6632, Université de Provence, Marseille, France
Full-text PDF (586 kB) Citations (1)
References:
Abstract: We prove a Bernstein-type inequality involving the Bergman and Hardy norms, for rational functions in the unit disk $\mathbb D$ having at most $n$ poles all outside of $\frac1r\mathbb D$, $0<r<1$. The asymptotic sharpness of this inequality is shown as $n\to\infty$ and $r\to1^-$. We apply our Bernstein-type inequality to an efficient Nevanlinna–Pick interpolation problem in the standard Dirichlet space, constrained by the $H^2$-norm.
Key words and phrases: Bernstein-type inequality, Bergman space, Besov space.
Received: 28.04.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 182, Issue 5, Pages 639–645
DOI: https://doi.org/10.1007/s10958-012-0768-5
Bibliographic databases:
Document Type: Article
UDC: 517.547
Language: English
Citation: R. Zarouf, “Application of a Bernstein-type inequality to rational interpolation in the Dirichlet space”, Investigations on linear operators and function theory. Part 39, Zap. Nauchn. Sem. POMI, 389, POMI, St. Petersburg, 2011, 101–112; J. Math. Sci. (N. Y.), 182:5 (2012), 639–645
Citation in format AMSBIB
\Bibitem{Zar11}
\by R.~Zarouf
\paper Application of a~Bernstein-type inequality to rational interpolation in the Dirichlet space
\inbook Investigations on linear operators and function theory. Part~39
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 389
\pages 101--112
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4120}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 182
\issue 5
\pages 639--645
\crossref{https://doi.org/10.1007/s10958-012-0768-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860376370}
Linking options:
  • https://www.mathnet.ru/eng/znsl4120
  • https://www.mathnet.ru/eng/znsl/v389/p101
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :63
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024