Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 321, Pages 183–196 (Mi znsl412)  

Generalized Artin–Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field. II

A. N. Zinoviev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: In this paper we consider the generalized Hilbert symbol in a higher local field of charactersitic 0 with the first residue field of characteristic 0 as well and with perfect last residue field of positive characteristic p which comes from higher local $p$-class field theory developed by I. Fesenko. Using the descent to a subfield of mixed characteristic we deduce from the generalized Artin–Hasse and Iwasawa formulas proved in a previous paper the corresponding Artin–Hasse and Iwasawa explicit reciprocity laws in the case under consideration.
Received: 23.12.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 3, Pages 3935–3941
DOI: https://doi.org/10.1007/s10958-006-0211-x
Bibliographic databases:
UDC: 512
Language: Russian
Citation: A. N. Zinoviev, “Generalized Artin–Hasse and Iwasawa formulas for the Hilbert symbol in a higher local field. II”, Problems in the theory of representations of algebras and groups. Part 12, Zap. Nauchn. Sem. POMI, 321, POMI, St. Petersburg, 2005, 183–196; J. Math. Sci. (N. Y.), 136:3 (2006), 3935–3941
Citation in format AMSBIB
\Bibitem{Zin05}
\by A.~N.~Zinoviev
\paper Generalized Artin--Hasse and Iwasawa formulas for the Hilbert symbol in a~higher local field.~II
\inbook Problems in the theory of representations of algebras and groups. Part~12
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 321
\pages 183--196
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2138416}
\zmath{https://zbmath.org/?q=an:1131.11074}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 136
\issue 3
\pages 3935--3941
\crossref{https://doi.org/10.1007/s10958-006-0211-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744794363}
Linking options:
  • https://www.mathnet.ru/eng/znsl412
  • https://www.mathnet.ru/eng/znsl/v321/p183
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :66
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024