Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 388, Pages 247–269 (Mi znsl4113)  

This article is cited in 2 scientific papers (total in 3 papers)

On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group

I. D. Suprunenko

Institute of Mathematics of the National Academy of Sciences of Belarus
Full-text PDF (691 kB) Citations (3)
References:
Abstract: We study behavior of regular unipotent elements from a subsystem subgroup of type $A_1\times A_2$ in $p$-restricted irreducible representations of a special linear group of rank greater than $5$ over a field of characteristic $p>2$. For a certain class of such representations with locally small highest weights it is shown that the images of these elements have Jordan blocks of all a priori possible sizes. In particular, the following is proved.
Let $K$ be an algebraically closed field of characteristic $p$, $G=A_r(K)$, $r\geq9$, $x\in G$ be a regular unipotent element from a subsystem subgroup of type $A_1\times A_2$, and let $\varphi$ be a $p$-restricted representation of $G$ with highest weight $\sum^r_{j=1}a_j\omega_j$. Set $l=\min\{p,1+2a_1+3(a_2+\dots+a_{r-1})+2a_r\}$. Assume that more than $6$ coefficients $a_j$ are not equal to $p-1$ and that for some $i<r$, the sum $a_i+a_{i+1}<p-2$ for $p>3$ and $a_i=a_{i+1}=0$ or $1$ for $p=3$. Then the element $\varphi(x)$ has Jordan blocks of all sizes from $1$ to $l$.
Key words and phrases: representations, subsystem subgroups, unipotent elements, Jordan block structure.
Received: 05.04.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 183, Issue 5, Pages 715–726
DOI: https://doi.org/10.1007/s10958-012-0835-y
Bibliographic databases:
Document Type: Article
UDC: 512.554.32
Language: Russian
Citation: I. D. Suprunenko, “On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group”, Problems in the theory of representations of algebras and groups. Part 21, Zap. Nauchn. Sem. POMI, 388, POMI, St. Petersburg, 2011, 247–269; J. Math. Sci. (N. Y.), 183:5 (2012), 715–726
Citation in format AMSBIB
\Bibitem{Sup11}
\by I.~D.~Suprunenko
\paper On the block structure of regular unipotent elements from subsystem subgroups of type $A_1\times A_2$ in representations of the special linear group
\inbook Problems in the theory of representations of algebras and groups. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 388
\pages 247--269
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4113}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 183
\issue 5
\pages 715--726
\crossref{https://doi.org/10.1007/s10958-012-0835-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862246540}
Linking options:
  • https://www.mathnet.ru/eng/znsl4113
  • https://www.mathnet.ru/eng/znsl/v388/p247
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :62
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024