Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 388, Pages 179–188 (Mi znsl4109)  

This article is cited in 2 scientific papers (total in 2 papers)

Nakayama functors and Eilenberg–Watts theorems

S. O. Ivanov

Saint-Petersburg State University, Saint-Petersburg, Russia
Full-text PDF (555 kB) Citations (2)
References:
Abstract: In the present paper analogues of Eilenberg–Watts theorem are proved for categories of finitely generated modules over finite dimensional algebras for right exact and left exact functors. Furthermore, for left exact functors corresponding bimodules are described explicitly. The main aim of this paper is to present how one can obtain some new descriptions of Nakayama functor and inverse Nakayama functor for selfinjective algebras with this versions of Eilenberg–Watts theorem.
Key words and phrases: Eilenberg–Watts theorem, Nakayama functor, selfinjective algebra, finite dimensional algebra.
Received: 30.05.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 183, Issue 5, Pages 675–680
DOI: https://doi.org/10.1007/s10958-012-0831-2
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: S. O. Ivanov, “Nakayama functors and Eilenberg–Watts theorems”, Problems in the theory of representations of algebras and groups. Part 21, Zap. Nauchn. Sem. POMI, 388, POMI, St. Petersburg, 2011, 179–188; J. Math. Sci. (N. Y.), 183:5 (2012), 675–680
Citation in format AMSBIB
\Bibitem{Iva11}
\by S.~O.~Ivanov
\paper Nakayama functors and Eilenberg--Watts theorems
\inbook Problems in the theory of representations of algebras and groups. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 388
\pages 179--188
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4109}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 183
\issue 5
\pages 675--680
\crossref{https://doi.org/10.1007/s10958-012-0831-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862266926}
Linking options:
  • https://www.mathnet.ru/eng/znsl4109
  • https://www.mathnet.ru/eng/znsl/v388/p179
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :143
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024