Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 388, Pages 17–47 (Mi znsl4104)  

This article is cited in 13 scientific papers (total in 13 papers)

Unitriangular factorisations of Chevalley groups

N. A. Vavilovab, A. V. Smolenskyab, B. Suryab

a Saint-Petersburg State University, Saint-Petersburg, Russia
b Indian Statistics Institute, Bangalore
References:
Abstract: Lately, the following problem attracted a lot of attention in various contexts: find the shortest factorisation $G=UU^-UU^-\dots U^\pm$ of a Chevalley group $G=G(\Phi,R)$ in terms of the unipotent radical $U=U(\Phi,R)$ of the standard Borel subgroup $B=B(\Phi,R)$ and the unipotent radical $U^-=U^-(\Phi,R)$ of the opposite Borel subgroup $B^-=B^-(\Phi,R)$. So far, the record over a finite field was established in a 2010 paper by Babai, Nikolov, and Pyber, where they prove that a group of Lie type admits unitriangular factorisation $G=UU^-UU^-U$ of length 5. Their proof invokes deep analytic and combinatorial tools. In the present paper we notice that from the work of Bass and Tavgen one immediately gets a much more general result, asserting that over any ring of stable rank 1 one has unitriangular factorisation $G=UU^-UU^-$ of length 4. Moreover, we give a detailed survey of triangular factorisations, prove some related results, discuss prospects of generalisation to other classes of rings, and state several unsolved problems. Another main result of the present paper asserts that, in the assumption of the Generalised Riemann's Hypothesis, Chevalley groups over the ring $\mathbb Z[\frac1p]$ admit unitriangular factorisation $G=UU^-UU^-UU^-$ of length 6. Otherwise, the best length estimate for Hasse domains with infinite multiplicative groups that follows from the work of Cooke and Weinberger, gives 9 factors.
Key words and phrases: Chevalley groups, unitriangular factorisations, unipotent factorisations, rings of stable rank 1, Dedekind rings of arithmetic type, parabolic subgroups, bounded generation, Gauss decomposition, LULU-decomposition.
Received: 27.05.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 183, Issue 5, Pages 584–599
DOI: https://doi.org/10.1007/s10958-012-0826-z
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: N. A. Vavilov, A. V. Smolensky, B. Sury, “Unitriangular factorisations of Chevalley groups”, Problems in the theory of representations of algebras and groups. Part 21, Zap. Nauchn. Sem. POMI, 388, POMI, St. Petersburg, 2011, 17–47; J. Math. Sci. (N. Y.), 183:5 (2012), 584–599
Citation in format AMSBIB
\Bibitem{VavSmoсур11}
\by N.~A.~Vavilov, A.~V.~Smolensky, B.~Sury
\paper Unitriangular factorisations of Chevalley groups
\inbook Problems in the theory of representations of algebras and groups. Part~21
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 388
\pages 17--47
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4104}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 183
\issue 5
\pages 584--599
\crossref{https://doi.org/10.1007/s10958-012-0826-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862268867}
Linking options:
  • https://www.mathnet.ru/eng/znsl4104
  • https://www.mathnet.ru/eng/znsl/v388/p17
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :107
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024