Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 387, Pages 145–162 (Mi znsl4100)  

This article is cited in 1 scientific paper (total in 1 paper)

Correct and self-adjoint problems for biquadratic operators

I. N. Parasidisa, P. C. Tsekrekosb, T. G. Lokkasa

a Technological Educational Institution of Larissa, Greece
b Department of Mathematics, National Technical University, Athens, Greece
Full-text PDF (221 kB) Citations (1)
References:
Abstract: In this paper we continue the theme which has been investigated in [11, 12] and [13] and we present a simple method to prove correctness and self-adjointness of the operators of the form $B^4$ corresponding to some boundary value problems. We also give representations for the unique solutions for these problems. The algorithm is easy to implement via computer algebra systems. In our examples, Derive and Mathematica were used.
Key words and phrases: correct, self-adjoint and biquadratic operators, representation for the unique solution, boundary problem with integro-differential equation.
Received: 12.10.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 179, Issue 6, Pages 714–725
DOI: https://doi.org/10.1007/s10958-011-0621-2
Bibliographic databases:
Document Type: Article
UDC: 519.63+517.951
Language: English
Citation: I. N. Parasidis, P. C. Tsekrekos, T. G. Lokkas, “Correct and self-adjoint problems for biquadratic operators”, Representation theory, dynamical systems, combinatorial methods. Part XIX, Zap. Nauchn. Sem. POMI, 387, POMI, St. Petersburg, 2011, 145–162; J. Math. Sci. (N. Y.), 179:6 (2011), 714–725
Citation in format AMSBIB
\Bibitem{ParTseLok11}
\by I.~N.~Parasidis, P.~C.~Tsekrekos, T.~G.~Lokkas
\paper Correct and self-adjoint problems for biquadratic operators
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XIX
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 387
\pages 145--162
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4100}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 179
\issue 6
\pages 714--725
\crossref{https://doi.org/10.1007/s10958-011-0621-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83555172448}
Linking options:
  • https://www.mathnet.ru/eng/znsl4100
  • https://www.mathnet.ru/eng/znsl/v387/p145
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :51
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024