Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 387, Pages 83–101 (Mi znsl4097)  

This article is cited in 1 scientific paper (total in 1 paper)

Permutation binomials and their groups

N. N. Vasiliev, M. A. Rybalkin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (694 kB) Citations (1)
References:
Abstract: This paper is devoted to studying properties of permutation binomials over finite fields and studying possibility to use permutation binomials as enryption function. We present permutation binomials enumeratation algorithm. Using this algorithm all permutation binomials for finite field up to order 15000 were generated. Using this data we investigate groups, generated by permutation binomials and found that over some finite fields $\mathbb F_q$ every bijective function over $[1..q-1]$ can be represented as composition of binomials. We study possibility of permutaion binomials generation over large prime fields. And we prooved that RSA generalization using permutation binomials isn't secure.
Key words and phrases: finite fields, permutational poynomials, permutational binomials, symmetric group, subgroups generated by binomials, cryptographic protocol.
Received: 21.12.2010
English version:
Journal of Mathematical Sciences (New York), 2011, Volume 179, Issue 6, Pages 679–689
DOI: https://doi.org/10.1007/s10958-011-0618-x
Bibliographic databases:
Document Type: Article
UDC: 512.62
Language: Russian
Citation: N. N. Vasiliev, M. A. Rybalkin, “Permutation binomials and their groups”, Representation theory, dynamical systems, combinatorial methods. Part XIX, Zap. Nauchn. Sem. POMI, 387, POMI, St. Petersburg, 2011, 83–101; J. Math. Sci. (N. Y.), 179:6 (2011), 679–689
Citation in format AMSBIB
\Bibitem{VasRyb11}
\by N.~N.~Vasiliev, M.~A.~Rybalkin
\paper Permutation binomials and their groups
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XIX
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 387
\pages 83--101
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4097}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 179
\issue 6
\pages 679--689
\crossref{https://doi.org/10.1007/s10958-011-0618-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83555166293}
Linking options:
  • https://www.mathnet.ru/eng/znsl4097
  • https://www.mathnet.ru/eng/znsl/v387/p83
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :78
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024