|
Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 141, Pages 39–55
(Mi znsl4087)
|
|
|
|
Moduli of Hankel operators and a problem of V. V. Peller and S. V. Khrushchev
S. R. Treil'
Abstract:
Theorem. {\it Let $A$ be a bounded nonnegativ, selfadjoint operator such that $0\in\sigma(A)$, $\dim\operatorname{Ker}A=0$ or $\infty$, the operator $A|(\operatorname{Ker}A)^\bot$ is unitary equivalent to the operator of multiplication by $x$ in the space $L^2(\mu)$, where $\mu$ is the discrete measure. Then there exists a Hankel operator $H_\varphi$ such that the operator $A$ is unitarily equivalent to the operator $(H_\varphi^*H_\varphi)^{1/2}$.}
Citation:
S. R. Treil', “Moduli of Hankel operators and a problem of V. V. Peller and S. V. Khrushchev”, Investigations on linear operators and function theory. Part XIV, Zap. Nauchn. Sem. LOMI, 141, "Nauka", Leningrad. Otdel., Leningrad, 1985, 39–55; J. Soviet Math., 37:5 (1987), 1287–1269
Linking options:
https://www.mathnet.ru/eng/znsl4087 https://www.mathnet.ru/eng/znsl/v141/p39
|
Statistics & downloads: |
Abstract page: | 96 | Full-text PDF : | 39 |
|