Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 141, Pages 5–17 (Mi znsl4085)  

This article is cited in 2 scientific papers (total in 2 papers)

Hankel operators and problems of best approximation of unbounded functions

A. L. Vol'berg, V. A. Tolokonnikov
Full-text PDF (498 kB) Citations (2)
Abstract: For each function $f$, $f\in VMO$, there exist a unique function $f_0$, analytic in the circle $\mathbb D$ and such that $\|f-f_0\|_\infty=\inf\{\|f-g\|_\infty\colon g\in VMO_A\}$. We define the operator of best approximation (nonlinear) $\mathcal A$, $\mathcal Af=f_0$, $f\in VMO$. In the paper one considers the question of the preservation of a class under the action of the operator i.e. finding the classes $X$, $X\subset VMO$, $\mathcal AX\subset X$. One investigates the classes $X$ containing unbounded functions. It is proved that if $P_-X$ is the space of the symbols of the Hankel operators from a Banach space $E$ of functions into the Hardy space $H^2$, then $\mathcal AX\subset X$. For $E$ one can take “almost” any space.
English version:
Journal of Soviet Mathematics, 1987, Volume 37, Issue 5, Pages 1269–1275
DOI: https://doi.org/10.1007/BF01327036
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. L. Vol'berg, V. A. Tolokonnikov, “Hankel operators and problems of best approximation of unbounded functions”, Investigations on linear operators and function theory. Part XIV, Zap. Nauchn. Sem. LOMI, 141, "Nauka", Leningrad. Otdel., Leningrad, 1985, 5–17; J. Soviet Math., 37:5 (1987), 1269–1275
Citation in format AMSBIB
\Bibitem{VolTol85}
\by A.~L.~Vol'berg, V.~A.~Tolokonnikov
\paper Hankel operators and problems of best approximation of unbounded functions
\inbook Investigations on linear operators and function theory. Part~XIV
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 141
\pages 5--17
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=788887}
\zmath{https://zbmath.org/?q=an:0614.41026}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 37
\issue 5
\pages 1269--1275
\crossref{https://doi.org/10.1007/BF01327036}
Linking options:
  • https://www.mathnet.ru/eng/znsl4085
  • https://www.mathnet.ru/eng/znsl/v141/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :92
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024