Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 140, Pages 137–150 (Mi znsl4080)  

Schrödinger equation. The theorem concerning the ansatz representation of a solution concentrated in a neighborhood of a minimum of the potential

T. F. Pankratova
Abstract: The one-dimensional Schrödinger equation $-\frac{\hbar^2}{2m}y''+v(x)=F(y)$ is considered on the segment $[-l,l]$. It is assumed that the potential $v(x)$ of this equation has one minimum $v(0)=v'(0)=0$, $v''(0)>0$, $v(x)>0$ for $x\ne0$; $v(x)\ge h>0$ outside some neighborhood of zero. It is proved that there exists a solution of the form $\frac1{\sqrt{\psi'(x)}}D_n(\frac{\psi (x)}{\sqrt\hbar})$ where $D_n$ is a parabolic cylinder function, and $\psi$ is a smooth function which is bounded on $[-l,l]$ together with derivatives through third order by a constant not depending on $\hbar$. The function $\psi$ and the real number $E$ admit a known asymptotic expansion as $\hbar\to0$.
English version:
Journal of Soviet Mathematics, 1986, Volume 32, Issue 2, Pages 196–204
DOI: https://doi.org/10.1007/BF01084158
Bibliographic databases:
Document Type: Article
UDC: 534
Language: Russian
Citation: T. F. Pankratova, “Schrödinger equation. The theorem concerning the ansatz representation of a solution concentrated in a neighborhood of a minimum of the potential”, Mathematical problems in the theory of wave propagation. Part 14, Zap. Nauchn. Sem. LOMI, 140, "Nauka", Leningrad. Otdel., Leningrad, 1984, 137–150; J. Soviet Math., 32:2 (1986), 196–204
Citation in format AMSBIB
\Bibitem{Pan84}
\by T.~F.~Pankratova
\paper Schr\"odinger equation. The theorem concerning the ansatz representation of a~solution concentrated in a~neighborhood of a~minimum of the potential
\inbook Mathematical problems in the theory of wave propagation. Part~14
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 140
\pages 137--150
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=765722}
\zmath{https://zbmath.org/?q=an:0557.35025}
\transl
\jour J. Soviet Math.
\yr 1986
\vol 32
\issue 2
\pages 196--204
\crossref{https://doi.org/10.1007/BF01084158}
Linking options:
  • https://www.mathnet.ru/eng/znsl4080
  • https://www.mathnet.ru/eng/znsl/v140/p137
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:113
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024