Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 140, Pages 88–104 (Mi znsl4075)  

This article is cited in 1 scientific paper (total in 1 paper)

An integral representation of solutions and the problem of coupling factors for a linear differential equation

M. A. Kovalevskii
Full-text PDF (632 kB) Citations (1)
Abstract: The equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$, which is encountered in problems of mechanics, is considered in the work. It has two singular points: a regular singular point at zero and an irregular singular point at infinity. A fundamental family of solutions (f.f.s.) can be constructed in the form of integrals of Mellin-Barns type where the integrand satisfies a linear difference equation with polynomial coefficients. On the basis of this representation a f.f.s. is constructed in a neighborhood of zero, and its asymptotics at infinity is found. The coefficients of this asymptotics (the coupling factors) can be represented in the form of analytic expressions containing certain solutions of the difference equation adjoint to the difference equation previously mentioned. In contrast to previous works of the author, the general case of the initial equation is investigated.
English version:
Journal of Soviet Mathematics, 1986, Volume 32, Issue 2, Pages 162–172
DOI: https://doi.org/10.1007/BF01084154
Bibliographic databases:
Document Type: Article
UDC: 517.941.1
Language: Russian
Citation: M. A. Kovalevskii, “An integral representation of solutions and the problem of coupling factors for a linear differential equation”, Mathematical problems in the theory of wave propagation. Part 14, Zap. Nauchn. Sem. LOMI, 140, "Nauka", Leningrad. Otdel., Leningrad, 1984, 88–104; J. Soviet Math., 32:2 (1986), 162–172
Citation in format AMSBIB
\Bibitem{Kov84}
\by M.~A.~Kovalevskii
\paper An integral representation of solutions and the problem of coupling factors for a~linear differential equation
\inbook Mathematical problems in the theory of wave propagation. Part~14
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 140
\pages 88--104
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4075}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=765721}
\zmath{https://zbmath.org/?q=an:0573.34026}
\transl
\jour J. Soviet Math.
\yr 1986
\vol 32
\issue 2
\pages 162--172
\crossref{https://doi.org/10.1007/BF01084154}
Linking options:
  • https://www.mathnet.ru/eng/znsl4075
  • https://www.mathnet.ru/eng/znsl/v140/p88
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024