Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 122, Pages 66–71 (Mi znsl4066)  

This article is cited in 1 scientific paper (total in 1 paper)

An improvement of the Hash–Tognoli theorem

N. V. Ivanov
Full-text PDF (412 kB) Citations (1)
Abstract: Let $\mathcal M$ be a smooth closed manifold embedded in $\mathbb R^n$. The Hash–Tognoli theorem asserts that if $\dim\mathcal M<(n-1)/2$ then $\mathcal M$ can be arbitrary well approximated (in the $C^r$-topology with $r<\infty$) in $\mathbb R^n$ by a nonsingular real algebraic set. There is a well-known conjecture going back to Hash which asserts that the restriction on $\dim\mathcal M$ in the Hash-Tognoli theorem is in fact superfluous. But so far the possibility of approximation in the nonstable dimensions (i. e. for $\dim\mathcal M\geqslant(n-1)/2$) was known only for orientable $\mathcal M$ with codimension (in $\mathbb R^n$) 1 and 2. The purpose of the paper is to prove the following theorem, which weakens the restriction on $\dim\mathcal M$ in the Hash–Tognoli theorem to $\dim\mathcal M<(2n-1)/3$.
Theorem. If $\mathcal M$ is a smooth closed manifold embedded in $\mathbb R^n$, and $\dim\mathcal M<(2n-1)/3$ then $\mathcal M$ can be arbitrary well approximated in $\mathbb R^n$ by a nonsingular real algebraic set.
Bibliographic databases:
Document Type: Article
UDC: 515.171
Language: Russian
Citation: N. V. Ivanov, “An improvement of the Hash–Tognoli theorem”, Investigations in topology. Part IV, Zap. Nauchn. Sem. LOMI, 122, "Nauka", Leningrad. Otdel., Leningrad, 1982, 66–71
Citation in format AMSBIB
\Bibitem{Iva82}
\by N.~V.~Ivanov
\paper An improvement of the Hash--Tognoli theorem
\inbook Investigations in topology. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 122
\pages 66--71
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4066}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=661466}
\zmath{https://zbmath.org/?q=an:0519.14020}
Linking options:
  • https://www.mathnet.ru/eng/znsl4066
  • https://www.mathnet.ru/eng/znsl/v122/p66
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024