Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 122, Pages 56–65 (Mi znsl4064)  

This article is cited in 6 scientific papers (total in 6 papers)

Hielsen numbers of self-naps of surfaces

N. V. Ivanov
Full-text PDF (621 kB) Citations (6)
Abstract: The Hielsen number $N(f)$ of a self-map $f$ of a compact polyhedronis a classical invariant of $f$ – defined in terms of fixed points of $f$. The Nielsen number $N(f)$ is a lower bound for the number of fixed points for all maps homotopic to $f$. There is the following classical question about exactness of this bound: given a map $f$, whether there is a map homotopic to $f$ with precisely $N(f)$ fixed points? It is known that this bound is exact for self-maps of every compact polyhedron without local separating points which is not a surface. The main result of the paper asserts that this bound is exact for homotору autoequivalences of compact surfaces. The proof of this theorem is based on Thurston's theory of diffeomorphisms of surfaces. Besides that some examples of self-maps of compact surfaces are discussed. It seems that the above bound is not exact in these examples.
Bibliographic databases:
Document Type: Article
UDC: 515.143
Language: Russian
Citation: N. V. Ivanov, “Hielsen numbers of self-naps of surfaces”, Investigations in topology. Part IV, Zap. Nauchn. Sem. LOMI, 122, "Nauka", Leningrad. Otdel., Leningrad, 1982, 56–65
Citation in format AMSBIB
\Bibitem{Iva82}
\by N.~V.~Ivanov
\paper Hielsen numbers of self-naps of surfaces
\inbook Investigations in topology. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 122
\pages 56--65
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=661465}
\zmath{https://zbmath.org/?q=an:0492.55001}
Linking options:
  • https://www.mathnet.ru/eng/znsl4064
  • https://www.mathnet.ru/eng/znsl/v122/p56
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:168
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024