Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 122, Pages 30–55 (Mi znsl4063)  

Bitopological spaces

A. A. Ivanov
Abstract: A notion of bitopological space introduced by Y. C. Kelly as a triple $(X,\tau_1,\tau_2)$ where $\tau_1$ and $\tau_2$ are topological structures on a set $X$ is well known. The author considers here more general notion of bitopological space as a pair $(X,\beta)$ where $\beta$ is a topological structure on $X\times X$ called bitopological structure on $X$. Any triple $(X,\tau_1,\tau_2)$ naturally defines a topological space $(X\times X, \tau_1\times\tau_2)$ and consequently a bitopological space $(X, \tau_1\times\tau_2)$. Since $\tau_1\times\tau_2$ is a very special case of a topological structure on $X\times X$ the above defined notion is a true generalization of the previous notion of bitopological space. Any mapping $f\colon X_1\to X_2$ is called bicontinuous mapping $(X_1,\beta_1)$ into $(X_2, \beta_2)$ if $f\times f\colon (X_1\times X_1, \beta_1)\to (X_2\times X_2, \beta_2)$ is a continuous mapping. The paper contains some basic notions and initial results of general theory of bitopological spaces.
Bibliographic databases:
Document Type: Article
UDC: 515.145, 515.142.2
Language: Russian
Citation: A. A. Ivanov, “Bitopological spaces”, Investigations in topology. Part IV, Zap. Nauchn. Sem. LOMI, 122, "Nauka", Leningrad. Otdel., Leningrad, 1982, 30–55
Citation in format AMSBIB
\Bibitem{Iva82}
\by A.~A.~Ivanov
\paper Bitopological spaces
\inbook Investigations in topology. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 122
\pages 30--55
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4063}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=661464}
\zmath{https://zbmath.org/?q=an:0496.54029}
Linking options:
  • https://www.mathnet.ru/eng/znsl4063
  • https://www.mathnet.ru/eng/znsl/v122/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024