|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 115, Pages 169–177
(Mi znsl4049)
|
|
|
|
Global solutions of nonstationary kinetic equations
N. B. Maslova
Abstract:
For the nonstationary Boltzmann equation
$$
\frac{\partial F}{\partial t}+\xi_\alpha\frac{\partial F}{\partial x_\alpha}=Q(F,F),\qquad t>0,\quad\xi\in R^3,\quad x\in\Omega\subset R^3,
$$
one proves the unique global solvability of the Cauchy problem under nondifferentiable initial data and the unique global solvability of initial-boundary-value problems with homogeneous boundary conditions; it is shown that the solutions of the initial-boundary-value problems decay exponentially as $t\to\infty$.
Citation:
N. B. Maslova, “Global solutions of nonstationary kinetic equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Zap. Nauchn. Sem. LOMI, 115, "Nauka", Leningrad. Otdel., Leningrad, 1982, 169–177; J. Soviet Math., 28:5 (1985), 735–741
Linking options:
https://www.mathnet.ru/eng/znsl4049 https://www.mathnet.ru/eng/znsl/v115/p169
|
Statistics & downloads: |
Abstract page: | 122 | Full-text PDF : | 42 |
|