|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 115, Pages 97–103
(Mi znsl4043)
|
|
|
|
This article is cited in 1 scientific paper (total in 2 paper)
Solution of the Dirichlet problem for the Monge–Ampere equation in weight spaces
N. M. Ivochkina
Abstract:
One proves the regular solvability of the problem: $\det(u_{xx})=f(x,u,u_x)\ge\nu>0$, $u\mid_{\partial\Omega}=0$ for $f(u,u,\rho)\in C^{k+\alpha}(\overline{\mathfrak A})$, $\overline{\mathfrak A}\equiv\{x\in\overline\Omega;u\in R^1;\rho\in R^n\}$, $k\ge2$, under the natural consistency conditions of the dimensions of the convex domain $0<\alpha<1$, $\Omega\subset R^n$ and the growth of the function $f(x,u,\rho)$ with respect to $\rho$.
Citation:
N. M. Ivochkina, “Solution of the Dirichlet problem for the Monge–Ampere equation in weight spaces”, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Zap. Nauchn. Sem. LOMI, 115, "Nauka", Leningrad. Otdel., Leningrad, 1982, 97–103; J. Soviet Math., 28:5 (1985), 684–688
Linking options:
https://www.mathnet.ru/eng/znsl4043 https://www.mathnet.ru/eng/znsl/v115/p97
|
Statistics & downloads: |
Abstract page: | 121 | Full-text PDF : | 53 |
|