Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 115, Pages 40–60 (Mi znsl4039)  

This article is cited in 1 scientific paper (total in 2 paper)

Trace formula in Hamiltonian mechanics

V. S. Buslaev, E. A. Rybakina
Full-text PDF (793 kB) Citations (2)
Abstract: The equation in variations, corresponding to a fixed interval of the trajectory of the Hamiltonian system of classical mechanics, generates a linear canonical differential operator. It is shown that for the ratio of such operators there exists a regularized determinant. The trace formula expresses this determinant in terms of the Jacobian of a certain transformation, given by the motion of the classical system and acting in a space having dimension equal to the number of degrees of freedom of the system. One notes the connection between the obtained relations and the quasiclassical asymptotics for the continual integral, describing the dynamics of the corresponding quantum system.
English version:
Journal of Soviet Mathematics, 1985, Volume 28, Issue 5, Pages 645–659
DOI: https://doi.org/10.1007/BF02112328
Bibliographic databases:
Document Type: Article
UDC: 517.4
Language: Russian
Citation: V. S. Buslaev, E. A. Rybakina, “Trace formula in Hamiltonian mechanics”, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Zap. Nauchn. Sem. LOMI, 115, "Nauka", Leningrad. Otdel., Leningrad, 1982, 40–60; J. Soviet Math., 28:5 (1985), 645–659
Citation in format AMSBIB
\Bibitem{BusRyb82}
\by V.~S.~Buslaev, E.~A.~Rybakina
\paper Trace formula in Hamiltonian mechanics
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~14
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 115
\pages 40--60
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=660070}
\zmath{https://zbmath.org/?q=an:0537.70016}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 28
\issue 5
\pages 645--659
\crossref{https://doi.org/10.1007/BF02112328}
Linking options:
  • https://www.mathnet.ru/eng/znsl4039
  • https://www.mathnet.ru/eng/znsl/v115/p40
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024