|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 122, Pages 13–16
(Mi znsl4035)
|
|
|
|
An estimation of deviation of fixed points from a nonconvex set
N. M. Gulevich
Abstract:
In. this notes the estimation $\delta(F_i\times f, A)\leqslant2^{-\frac12}d(A)$, is given, where $A$ is an nonvoid closed bounded nonconvex set in a Hilbert space $H$, $f\colon\overline{\operatorname{co}}A\to H$ is a nonexpansive mapping and $f(\partial A)\subset A$, $\delta(F_i\times f, A)$ is the deviation of the fixed point set of a mapping $f$ from the set $A$, $d(A)$ is the diameter of the set $A$, $\partial A$ is the boundary of the set $A$ in $H$.
Citation:
N. M. Gulevich, “An estimation of deviation of fixed points from a nonconvex set”, Investigations in topology. Part IV, Zap. Nauchn. Sem. LOMI, 122, "Nauka", Leningrad. Otdel., Leningrad, 1982, 13–16
Linking options:
https://www.mathnet.ru/eng/znsl4035 https://www.mathnet.ru/eng/znsl/v122/p13
|
Statistics & downloads: |
Abstract page: | 80 | Full-text PDF : | 32 |
|