|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 322, Pages 186–211
(Mi znsl401)
|
|
|
|
This article is cited in 15 scientific papers (total in 15 papers)
On the statistical properties of finite continued fractions
A. V. Ustinov M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
The article is devoted to the statistical properties of continued fractions for the numbers $a/b$, for $a$ and $b$ in the sector $a,b\ge1$, $a^2+b^2\le R^2$. Main result is asymptotic formula with two meaning terms for the value
$$
N_x(R)=\sum_{a^2+b^2\le R^2\atop a,b\in\mathbb{N}}s_x(a/b),
$$
where $s_x(a/b)=|\{j\in\{1,\ldots,s\}:[0;t_j,\ldots,t_s]\le x\}|$ is Gaussian statistic for the fraction $a/b=[t_0;t_1,\ldots,t_s]$.
Received: 02.03.2005
Citation:
A. V. Ustinov, “On the statistical properties of finite continued fractions”, Proceedings on number theory, Zap. Nauchn. Sem. POMI, 322, POMI, St. Petersburg, 2005, 186–211; J. Math. Sci. (N. Y.), 137:2 (2006), 4722–4738
Linking options:
https://www.mathnet.ru/eng/znsl401 https://www.mathnet.ru/eng/znsl/v322/p186
|
|