Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 119, Pages 230–236 (Mi znsl4001)  

Outleading sequences and continuous semi-Markov processes on the line.

B. P. Harlamov
Abstract: A family $(g_\Delta, h_\Delta)$ ($\Delta$ is an interval) of desisions of the differential equation $f''+A(x)f'+B(x)f=0$ is considered, where $A$, $B$ are continuous functions and boundary conditions are as follows: for all $\Delta=(a, b), g_\Delta(a)=h_\Delta(b)=1, g_\Delta(b)=h_\Delta(a)=0$. Let $f_\Delta(B|x)=g_\Delta(x)\mathbb I(B|a)+h_\Delta(x)\mathbb I(B|b)$ if $x\in\Delta$ and $f_\Delta(B|x)=\mathbb I(B|x)$ if $x\notin\Delta,$ and $M_\Delta=\max_{x\in\Delta}|A(x)|$, $m_\Delta=-\max_{x\in\Delta}B(x)>0$. The following theorem is proved: if $M_{(-r, r)}/rm_{(-r, r)}\to0$ $(r\to\infty)$ then for each outleading sequence $(\Delta_1, \Delta_2,\dots)$ $(\forall x\in\mathbb R)$ $f_{(\Delta_1,\dots,\Delta_n)}(B|x)\to0$ $(n\to\infty)$ where $f_{(\Delta_1,\dots,\Delta_n)}(B|x)=\int_{\mathbb R}f_{\Delta_1}(dx_1|x)f_{(\Delta_2,\dots,\Delta_n)}(B|x_1)$ $(n\geqslant2, B\in\mathcal B(\mathbb R))$ is an iterated kernel. She sequence $(\Delta_1, \Delta_2,\dots)$ is called outleading one if $(\forall\xi\in\mathcal D(\mathbb R))$ $\tau_{(\Delta_1,\dots,\Delta_n)}\xi\to0$ $(n\to\infty)$ where $\tau_\Delta\xi=\inf\{t\geqslant0, \xi(t)\notin\Delta\}, \tau_{(\Delta_1,\dots,\Delta_n)}=\tau_{\Delta_1}+\tau_{(\Delta_2,\dots,\Delta_n)}\circ\theta_{\tau_{\Delta_1}}$, $\theta_\tau$ is a shift operator. This theorem is applied to prove the existence of a semi-Marcov process with the transition function to satisfy to defferential equation of the given form.
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: B. P. Harlamov, “Outleading sequences and continuous semi-Markov processes on the line.”, Problems of the theory of probability distributions. Part VII, Zap. Nauchn. Sem. LOMI, 119, "Nauka", Leningrad. Otdel., Leningrad, 1982, 230–236
Citation in format AMSBIB
\Bibitem{Har82}
\by B.~P.~Harlamov
\paper Outleading sequences and continuous semi-Markov processes on the line.
\inbook Problems of the theory of probability distributions. Part~VII
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 119
\pages 230--236
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4001}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=666102}
Linking options:
  • https://www.mathnet.ru/eng/znsl4001
  • https://www.mathnet.ru/eng/znsl/v119/p230
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:123
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024