|
Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 119, Pages 218–229
(Mi znsl4000)
|
|
|
|
Central limit theorem: convergence in the norm $\|u\|=\bigl(\int_{-\infty}^\infty u^2(x)e^{\frac{x^2}2}\,dx\bigr)$
S. V. Fomin
Abstract:
Sufficient conditions for the normal convergence in the topology specified in the title are given. These conditions hold for the uniformly and identically distributed variables, though there is no such a convergence for certain bounded and dentically distributed variables having regular densities.
Citation:
S. V. Fomin, “Central limit theorem: convergence in the norm $\|u\|=\bigl(\int_{-\infty}^\infty u^2(x)e^{\frac{x^2}2}\,dx\bigr)$”, Problems of the theory of probability distributions. Part VII, Zap. Nauchn. Sem. LOMI, 119, "Nauka", Leningrad. Otdel., Leningrad, 1982, 218–229
Linking options:
https://www.mathnet.ru/eng/znsl4000 https://www.mathnet.ru/eng/znsl/v119/p218
|
Statistics & downloads: |
Abstract page: | 117 |
|