Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 119, Pages 144–153 (Mi znsl3991)  

The uniqueness theorem for measures in $C(K)$ and its application in the theory of stochastic processes.

A. L. Koldobskii
Abstract: Let $(\Omega, \Sigma, \mathbf P)$ be a probability space, $K$ – a separable topological space, $\xi\colon\Omega\times K\to\mathbb R$ – a stochastic process with continious realizations. Let us define the distance between the stochastic process $\xi$ and the continious function $a\in C(K)$ as a random variable
$$ \alpha_a(\omega)=\max_{R\in K}|\xi(\omega, R)-a(K)|. $$

The main result of this article is the theorem that the stochastic process can be determined by the $p$-th moments of its distances from continious functions, where $p$ is a fixed real number, $p\ne0, 2, 4, 6,\dots$.
Bibliographic databases:
Document Type: Article
UDC: 519.53
Language: Russian
Citation: A. L. Koldobskii, “The uniqueness theorem for measures in $C(K)$ and its application in the theory of stochastic processes.”, Problems of the theory of probability distributions. Part VII, Zap. Nauchn. Sem. LOMI, 119, "Nauka", Leningrad. Otdel., Leningrad, 1982, 144–153
Citation in format AMSBIB
\Bibitem{Kol82}
\by A.~L.~Koldobskii
\paper The uniqueness theorem for measures in $C(K)$ and its application in the theory of stochastic processes.
\inbook Problems of the theory of probability distributions. Part~VII
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 119
\pages 144--153
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3991}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=666092}
\zmath{https://zbmath.org/?q=an:0497.60005}
Linking options:
  • https://www.mathnet.ru/eng/znsl3991
  • https://www.mathnet.ru/eng/znsl/v119/p144
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:85
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024