Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1982, Volume 118, Pages 4–24 (Mi znsl3976)  

Complexity lower bounds for machine computing models

A. P. Beltiukov
Abstract: The article is a survey report text on methods of obtaining computational complexity lower bounds. Besides that trade-off methods connected with them are,exposed. Schemes, crossing sequencies, tails, overlaps and related methods are considered. For illustrations of the methods somewhere in the article a new proof of an old result is given or a new result is proved.
Bibliographic databases:
Document Type: Article
UDC: 519.5
Language: Russian
Citation: A. P. Beltiukov, “Complexity lower bounds for machine computing models”, Computational complexity theory. Part I, Zap. Nauchn. Sem. LOMI, 118, "Nauka", Leningrad. Otdel., Leningrad, 1982, 4–24
Citation in format AMSBIB
\Bibitem{Bel82}
\by A.~P.~Beltiukov
\paper Complexity lower bounds for machine computing models
\inbook Computational complexity theory. Part~I
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 118
\pages 4--24
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3976}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=659082}
\zmath{https://zbmath.org/?q=an:0494.68058}
Linking options:
  • https://www.mathnet.ru/eng/znsl3976
  • https://www.mathnet.ru/eng/znsl/v118/p4
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024