|
Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 117, Pages 183–191
(Mi znsl3974)
|
|
|
|
On a perturbation of the poles of scattering matrix for varying baundary condition
S. V. Petras
Abstract:
It is considered the behavior of the poles $z_n(\varepsilon)$, $n=1,2,\dots$ of scattering matrix of the operator $l_\varepsilon u=-\Delta u(x), x\in\Omega, \displaystyle\varepsilon\frac{\partial u}{\partial n}+\sigma(x)u|_{\partial\Omega}$ for $\varepsilon\to0$. It is proved that $|z_n(\varepsilon)-z_n|=O(\varepsilon^{\frac1{2q_n}})$ where $q_n$ is the order of pole $z_n$ of scattering matrix of the operator $l_0u=-\Delta u, u|_{\partial\Omega}=0$.
Citation:
S. V. Petras, “On a perturbation of the poles of scattering matrix for varying baundary condition”, Mathematical problems in the theory of wave propagation. Part 12, Zap. Nauchn. Sem. LOMI, 117, "Nauka", Leningrad. Otdel., Leningrad, 1981, 183–191
Linking options:
https://www.mathnet.ru/eng/znsl3974 https://www.mathnet.ru/eng/znsl/v117/p183
|
Statistics & downloads: |
Abstract page: | 108 | Full-text PDF : | 45 |
|