Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 322, Pages 107–124 (Mi znsl396)  

This article is cited in 13 scientific papers (total in 13 papers)

Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values

W. Zudilin

M. V. Lomonosov Moscow State University
References:
Abstract: We construct simultaneous rational approximations to the $q$-series $L_1(x_1;q)$ and $L_1(x_2;q)$, and, if $x=x_1=x_2$, to the series $L_1(x;q)$ and $L_2(x;q)$, where
\begin{gather*} L_1(x;q)=\sum_{n=1}^\infty\frac{(xq)^n}{1-q^n}=\sum_{n=1}^\infty\frac{xq^n}{1-xq^n}, \\ L_2(x;q)=\sum_{n=1}^\infty\frac{n(xq)^n}{1-q^n}=\sum_{n=1}^\infty\frac{xq^n}{(1-xq^n)^2}. \end{gather*}
Applying the construction, we obtain quantitative linear independence over $\mathbb Q$ of the numbers in the following collections: $1$, $\zeta_q(1)=L_1(1;q)$, $\zeta_{q^2}(1)$, and $1$, $\zeta_q(1)$, $\zeta_q(2)=L_2(1;q)$ for $q=1/p$, $p\in\mathbb Z\setminus\{0,\pm1\}$.
Received: 24.12.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 2, Pages 4673–4683
DOI: https://doi.org/10.1007/s10958-006-0263-y
Bibliographic databases:
Document Type: Article
UDC: 519.68
Language: English
Citation: W. Zudilin, “Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values”, Proceedings on number theory, Zap. Nauchn. Sem. POMI, 322, POMI, St. Petersburg, 2005, 107–124; J. Math. Sci. (N. Y.), 137:2 (2006), 4673–4683
Citation in format AMSBIB
\Bibitem{Zud05}
\by W.~Zudilin
\paper Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values
\inbook Proceedings on number theory
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 322
\pages 107--124
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl396}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2138454}
\zmath{https://zbmath.org/?q=an:1088.11052}
\elib{https://elibrary.ru/item.asp?id=9126050}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 2
\pages 4673--4683
\crossref{https://doi.org/10.1007/s10958-006-0263-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746276949}
Linking options:
  • https://www.mathnet.ru/eng/znsl396
  • https://www.mathnet.ru/eng/znsl/v322/p107
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :90
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024