|
Zapiski Nauchnykh Seminarov POMI, 2005, Volume 322, Pages 107–124
(Mi znsl396)
|
|
|
|
This article is cited in 13 scientific papers (total in 13 papers)
Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values
W. Zudilin M. V. Lomonosov Moscow State University
Abstract:
We construct simultaneous rational approximations to the $q$-series $L_1(x_1;q)$ and $L_1(x_2;q)$, and,
if $x=x_1=x_2$, to the series $L_1(x;q)$ and $L_2(x;q)$, where
\begin{gather*}
L_1(x;q)=\sum_{n=1}^\infty\frac{(xq)^n}{1-q^n}=\sum_{n=1}^\infty\frac{xq^n}{1-xq^n},
\\
L_2(x;q)=\sum_{n=1}^\infty\frac{n(xq)^n}{1-q^n}=\sum_{n=1}^\infty\frac{xq^n}{(1-xq^n)^2}.
\end{gather*}
Applying the construction, we obtain quantitative linear independence over $\mathbb Q$ of the numbers in the following collections: $1$, $\zeta_q(1)=L_1(1;q)$, $\zeta_{q^2}(1)$, and $1$, $\zeta_q(1)$, $\zeta_q(2)=L_2(1;q)$ for $q=1/p$, $p\in\mathbb Z\setminus\{0,\pm1\}$.
Received: 24.12.2004
Citation:
W. Zudilin, “Approximations to $q$-logarithms and $q$-dilogarithms, with applications to $q$-zeta values”, Proceedings on number theory, Zap. Nauchn. Sem. POMI, 322, POMI, St. Petersburg, 2005, 107–124; J. Math. Sci. (N. Y.), 137:2 (2006), 4673–4683
Linking options:
https://www.mathnet.ru/eng/znsl396 https://www.mathnet.ru/eng/znsl/v322/p107
|
Statistics & downloads: |
Abstract page: | 231 | Full-text PDF : | 90 | References: | 42 |
|