|
Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 113, Pages 258–260
(Mi znsl3959)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short communications
Modulus of boundary values of analytic functions of class $\Lambda^n_\omega$
N. A. Shirokov
Abstract:
Let $\omega$ be a modulus of continuity, $\Lambda^n_\omega$ be the class of all functions analytic
in the unit disk of the complex plane and such that
$$
|f^{(n)}(z)-f^n(\zeta)|\le C_f\omega(|z-\zeta|)\quad(|z|,|\zeta|<1).
$$
A condition is given (depending essentially on $\omega$), necessary for a nonnegative function defined on the unit circle to coLncide with the modulus of some function of class $\Lambda^n_\omega$.
Citation:
N. A. Shirokov, “Modulus of boundary values of analytic functions of class $\Lambda^n_\omega$”, Investigations on linear operators and function theory. Part XI, Zap. Nauchn. Sem. LOMI, 113, "Nauka", Leningrad. Otdel., Leningrad, 1981, 258–260; J. Soviet Math., 22:6 (1983), 1870–1872
Linking options:
https://www.mathnet.ru/eng/znsl3959 https://www.mathnet.ru/eng/znsl/v113/p258
|
Statistics & downloads: |
Abstract page: | 152 | Full-text PDF : | 55 |
|