Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 113, Pages 237–242 (Mi znsl3955)  

Short communications

For which $p$ and $r$ is the equation $\Pi_p(L^r,\cdot)=I_p(L^r,\cdot)$ true?

N. G. Sidorenko
Abstract: It is explained when the classes of $p$-absolutely summing and $p$-integral operators given on the space $L^r(\mu)$ coincide. For a Banach space $X$ there is considered the following subset of the real line:
$$ J_X\stackrel{\mathrm{def}}=\{p\colon1\le p<\infty,\ \Pi_p(X,Y)=I_p(X,Y)\ \forall Y\}. $$
In the case when $X$ is an infinite-dimensional subspace of the space $L^r(\mu)$, it is proved that $J_X=(1,2]$ if $1\le r\le2$, and $J_X=\{2\}$ if $2<r<\infty$ and $X$ is not isomorphic with a Hilbert space.
English version:
Journal of Soviet Mathematics, 1983, Volume 22, Issue 6, Pages 1856–1860
DOI: https://doi.org/10.1007/BF01882589
Bibliographic databases:
Document Type: Article
UDC: 513.881
Language: Russian
Citation: N. G. Sidorenko, “For which $p$ and $r$ is the equation $\Pi_p(L^r,\cdot)=I_p(L^r,\cdot)$ true?”, Investigations on linear operators and function theory. Part XI, Zap. Nauchn. Sem. LOMI, 113, "Nauka", Leningrad. Otdel., Leningrad, 1981, 237–242; J. Soviet Math., 22:6 (1983), 1856–1860
Citation in format AMSBIB
\Bibitem{Sid81}
\by N.~G.~Sidorenko
\paper For which~$p$ and~$r$ is the equation $\Pi_p(L^r,\cdot)=I_p(L^r,\cdot)$ true?
\inbook Investigations on linear operators and function theory. Part~XI
\serial Zap. Nauchn. Sem. LOMI
\yr 1981
\vol 113
\pages 237--242
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3955}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=629848}
\zmath{https://zbmath.org/?q=an:0515.47008|0485.47011}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 22
\issue 6
\pages 1856--1860
\crossref{https://doi.org/10.1007/BF01882589}
Linking options:
  • https://www.mathnet.ru/eng/znsl3955
  • https://www.mathnet.ru/eng/znsl/v113/p237
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024