|
Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 113, Pages 178–198
(Mi znsl3946)
|
|
|
|
This article is cited in 13 scientific papers (total in 13 papers)
Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a problem of S.-Nagy
V. A. Tolokonnikov
Abstract:
Let $E_1,E_2$ be Hilbert spaces, $H^\infty(E_1,E_2)$ be the space of functions, bounded and analytic in the disk $\mathbb D$, with values in the space of bounded linear operators from $E_1$ to $E_2$. Estimates are investigated for a solution of the problem of S.-Nagy of finding a left inverse element for a function $F$, $F\in H^\infty(E_1,E_2)$. For $\dim E_1=1$ this problem is a generalization of the corona problem. Let $C_n(\delta)=\sup\{\|G\|_\infty\colon F\in H^\infty(E_1,E_2),\,\dim E_1=n,\,\|F\|_\infty\le1,\,\|F(z)a\|_2\ge\delta\|a\|_2\ (z\in\mathbb D,\,a\in E_1 );\ G\in H^\infty(E_2,E_1)\ \text{is a~function of minimal norm for which}\ GF=I_{E_1}\}$. Then
$$
\frac1{\sqrt2\delta^2}\le C_1(\delta)\le\frac{20(\log 1/\delta+1)^{3/2}}{\delta^2},\qquad c_n\delta^{-(n-1)}\le C_n(\delta)\le a_n\delta^{-(2n+1)},
$$
where $a_n,c_n$ are constants depending only on $n$. The behavior of the function $C_1$ as $\delta\to1$ is described. Other results are obtained also.
Citation:
V. A. Tolokonnikov, “Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a problem of S.-Nagy”, Investigations on linear operators and function theory. Part XI, Zap. Nauchn. Sem. LOMI, 113, "Nauka", Leningrad. Otdel., Leningrad, 1981, 178–198; J. Soviet Math., 22:6 (1983), 1814–1828
Linking options:
https://www.mathnet.ru/eng/znsl3946 https://www.mathnet.ru/eng/znsl/v113/p178
|
Statistics & downloads: |
Abstract page: | 247 | Full-text PDF : | 99 |
|