Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 113, Pages 178–198 (Mi znsl3946)  

This article is cited in 13 scientific papers (total in 13 papers)

Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a problem of S.-Nagy

V. A. Tolokonnikov
Abstract: Let $E_1,E_2$ be Hilbert spaces, $H^\infty(E_1,E_2)$ be the space of functions, bounded and analytic in the disk $\mathbb D$, with values in the space of bounded linear operators from $E_1$ to $E_2$. Estimates are investigated for a solution of the problem of S.-Nagy of finding a left inverse element for a function $F$, $F\in H^\infty(E_1,E_2)$. For $\dim E_1=1$ this problem is a generalization of the corona problem. Let $C_n(\delta)=\sup\{\|G\|_\infty\colon F\in H^\infty(E_1,E_2),\,\dim E_1=n,\,\|F\|_\infty\le1,\,\|F(z)a\|_2\ge\delta\|a\|_2\ (z\in\mathbb D,\,a\in E_1 );\ G\in H^\infty(E_2,E_1)\ \text{is a~function of minimal norm for which}\ GF=I_{E_1}\}$. Then
$$ \frac1{\sqrt2\delta^2}\le C_1(\delta)\le\frac{20(\log 1/\delta+1)^{3/2}}{\delta^2},\qquad c_n\delta^{-(n-1)}\le C_n(\delta)\le a_n\delta^{-(2n+1)}, $$
where $a_n,c_n$ are constants depending only on $n$. The behavior of the function $C_1$ as $\delta\to1$ is described. Other results are obtained also.
English version:
Journal of Soviet Mathematics, 1983, Volume 22, Issue 6, Pages 1814–1828
DOI: https://doi.org/10.1007/BF01882580
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. A. Tolokonnikov, “Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a problem of S.-Nagy”, Investigations on linear operators and function theory. Part XI, Zap. Nauchn. Sem. LOMI, 113, "Nauka", Leningrad. Otdel., Leningrad, 1981, 178–198; J. Soviet Math., 22:6 (1983), 1814–1828
Citation in format AMSBIB
\Bibitem{Tol81}
\by V.~A.~Tolokonnikov
\paper Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a~problem of S.-Nagy
\inbook Investigations on linear operators and function theory. Part~XI
\serial Zap. Nauchn. Sem. LOMI
\yr 1981
\vol 113
\pages 178--198
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3946}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=629839}
\zmath{https://zbmath.org/?q=an:0515.46032|0472.46024}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 22
\issue 6
\pages 1814--1828
\crossref{https://doi.org/10.1007/BF01882580}
Linking options:
  • https://www.mathnet.ru/eng/znsl3946
  • https://www.mathnet.ru/eng/znsl/v113/p178
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:247
    Full-text PDF :99
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024