|
Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 113, Pages 135–148
(Mi znsl3944)
|
|
|
|
Two remarks concerning the equation $\Pi_p(X,\cdot)=I_p(X,\cdot)$
S. V. Kislyakov
Abstract:
It is proved that the analog of Grothendieck's theorem is valid for a disk-algebra “up to a logarithmic factor”. Namely, if $T\in\mathscr L(C_A,L^1)$ and $\operatorname{rank}T\le n$ then $\pi_2(t)\le C(1+\log n)\|T\|$. The question of whether the logarithmic factor is actually necessary remains open. It is also established that $C^*_A$ is a space of cotype $q$ for any $q$, $q>2$. The proofs are based on a theorem of Mityagin–Pelchinskii: $\pi_p(T)\le c\cdot p\cdot i_p(T)$, $p\ge2$, for any operator $T$ acting from a disk-algebra to an arbitrary Banach space.
Citation:
S. V. Kislyakov, “Two remarks concerning the equation $\Pi_p(X,\cdot)=I_p(X,\cdot)$”, Investigations on linear operators and function theory. Part XI, Zap. Nauchn. Sem. LOMI, 113, "Nauka", Leningrad. Otdel., Leningrad, 1981, 135–148; J. Soviet Math., 22:6 (1983), 1783–1792
Linking options:
https://www.mathnet.ru/eng/znsl3944 https://www.mathnet.ru/eng/znsl/v113/p135
|
Statistics & downloads: |
Abstract page: | 194 | Full-text PDF : | 53 |
|