Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 113, Pages 41–75 (Mi znsl3941)  

This article is cited in 7 scientific papers (total in 7 papers)

Control subspaces of minimal dimension. Elementary introduction. Discotheca

V. I. Vasyunin, N. K. Nikol'skii
Abstract: In this paper there is introduced and studied the following characteristic of a linear operator $A$ acting on a Banach space $X$:
$$ \operatorname{disc}A\stackrel{\mathrm{def}}=\sup\{\min(\dim R'\colon R'\subset R,\ R'\in\operatorname{Cyc}A)\colon R\in\operatorname{Cyc}A\}, $$
where $\operatorname{Cyc}A=\{R\colon R\ \text{is a~subspace of}~X,\ \dim R<+\infty,\ \operatorname{span}(A^nR\colon n\ge0)=X\}$. Always $\operatorname{disc}A\ge\mu_A=$ (the multiplicity of the spectrum of the operator $A$) $\stackrel{\mathrm{def}}=\min(\dim R\colon R\in\operatorname{Cyc}A)$, where (by definition) in each $A$-cyclic subspace there is contained a cyclic subspace of dimension $\le\operatorname{disc}A$. For a linear dynamical system $x(t)=Ax(t)+Bu(t)$ which is controllable, the characteristic $\operatorname{disc}A$ of the evolution operator $A$ shows how much the control space can be diminished without losing controllability. In this paper there are established some general properties of $\operatorname{disc}$ (for example, conditions are given under which $\operatorname{disc}(A\oplus B)=\max(\operatorname{disc}A,\operatorname{disc}B)$; $\operatorname{disc}$ is computed for the following operators: $S$ ($S$ is the shift in the Hardy space $H^2$); $\operatorname{disc}S=2$ (but $\mu_S=1$); $\operatorname{disc}S^*_n=n$ (but $\mu_{S^*_n}=1$) , where $S_n=S\oplus\dots\oplus S$; $\operatorname{disc}S=2$ (but $\mu_S=1$), where $S$ is the bilateral shift. It is proved that for a normal operator $N$ with simple spectrum, $\operatorname{disc}N=\mu_N=1$ $\Longleftrightarrow$ (the operator $N$ is reductive). There are other results also, and also a list of unsolved problems.
English version:
Journal of Soviet Mathematics, 1983, Volume 22, Issue 6, Pages 1719–1742
DOI: https://doi.org/10.1007/BF01882576
Bibliographic databases:
Document Type: Article
UDC: 5I3.88+517.97
Language: Russian
Citation: V. I. Vasyunin, N. K. Nikol'skii, “Control subspaces of minimal dimension. Elementary introduction. Discotheca”, Investigations on linear operators and function theory. Part XI, Zap. Nauchn. Sem. LOMI, 113, "Nauka", Leningrad. Otdel., Leningrad, 1981, 41–75; J. Soviet Math., 22:6 (1983), 1719–1742
Citation in format AMSBIB
\Bibitem{VasNik81}
\by V.~I.~Vasyunin, N.~K.~Nikol'skii
\paper Control subspaces of minimal dimension. Elementary introduction. Discotheca
\inbook Investigations on linear operators and function theory. Part~XI
\serial Zap. Nauchn. Sem. LOMI
\yr 1981
\vol 113
\pages 41--75
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3941}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=629834}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 22
\issue 6
\pages 1719--1742
\crossref{https://doi.org/10.1007/BF01882576}
Linking options:
  • https://www.mathnet.ru/eng/znsl3941
  • https://www.mathnet.ru/eng/znsl/v113/p41
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :165
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024