Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 322, Pages 76–82 (Mi znsl394)  

This article is cited in 2 scientific papers (total in 2 papers)

Divisibility properties of certain recurrent sequences

A. Dubickas

Vilnius University
Full-text PDF (157 kB) Citations (2)
References:
Abstract: Let $g$ and $m$ be two positive integers, and let $F$ be a polynomial with integer coefficients. We show that the recurrent sequence $x_0=g$, $x_n=x_{n-1}^n+F(n)$, $n=1,2,3,\dots$, is periodic modulo $m$. Then a special case, with $F(z)=1$ and with $m=p>2$ being a prime number, is considered. We show, for instance, that the sequence $x_0=2$, $x_n=x_{n-1}^n+1$, $n=1,2,3,\dots$, has infinitely many elements divisible by every prime number $p$ which is less than or equal to 211 except for three prime numbers $p=23, 47, 167$ that do not divide $x_n$. These recurrent sequences are related to the construction of transcendental numbers $\zeta$ for which the sequences $[\zeta^{n!}]$, $n=1,2,3,\dots$, have some nice divisibility properties.
Received: 05.03.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 2, Pages 4654–4657
DOI: https://doi.org/10.1007/s10958-006-0261-0
Bibliographic databases:
UDC: 519.68
Language: English
Citation: A. Dubickas, “Divisibility properties of certain recurrent sequences”, Proceedings on number theory, Zap. Nauchn. Sem. POMI, 322, POMI, St. Petersburg, 2005, 76–82; J. Math. Sci. (N. Y.), 137:2 (2006), 4654–4657
Citation in format AMSBIB
\Bibitem{Dub05}
\by A.~Dubickas
\paper Divisibility properties of certain recurrent sequences
\inbook Proceedings on number theory
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 322
\pages 76--82
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl394}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2138452}
\zmath{https://zbmath.org/?q=an:1080.11013}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 2
\pages 4654--4657
\crossref{https://doi.org/10.1007/s10958-006-0261-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746112268}
Linking options:
  • https://www.mathnet.ru/eng/znsl394
  • https://www.mathnet.ru/eng/znsl/v322/p76
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:292
    Full-text PDF :88
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024