|
Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 112, Pages 167–171
(Mi znsl3936)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
An isolation theorem for decomposable forms of purely real algebraic fields of degree $n\ge3$
B. F. Skubenko
Abstract:
Let $M$ be a complete module of a purely algebraic field of degree $n\ge3$, let $\Lambda$ be the lattice of this module and let $F(X)$ be its form. By $\Lambda_\varepsilon$ we denote any lattice for which we have $\Lambda_\varepsilon=\tau\Lambda$, where $\tau$ is a nondiagonal matrix satisfying the condition $\|\tau-I\|\le\varepsilon$, $I$ being the identity matrix. The complete collection of such lattices will be denoted by $\{\Lambda_\varepsilon\}$. To each lattice $\Lambda_\varepsilon$ we associate in a natural manner the decomposable form $F_\varepsilon(X)$. The complete collection of forms, corresponding to the set $\{\Lambda_\varepsilon\}$, will be denoted by $\{F_\varepsilon\}$. It is shown that for any given arbitrarily small interval $(N-\eta,N+\eta)$, one can select an $\varepsilon$ one can select an $F_\varepsilon(X)$ from $\{F_\varepsilon\}$ there exists an integral vector $X_0$ such that $N-\eta<F_\varepsilon(X_0)<N+\eta$.
Citation:
B. F. Skubenko, “An isolation theorem for decomposable forms of purely real algebraic fields of degree $n\ge3$”, Analytical theory of numbers and theory of functions. Part 4, Zap. Nauchn. Sem. LOMI, 112, "Nauka", Leningrad. Otdel., Leningrad, 1981, 167–171; J. Soviet Math., 25:2 (1984), 1089–1092
Linking options:
https://www.mathnet.ru/eng/znsl3936 https://www.mathnet.ru/eng/znsl/v112/p167
|
Statistics & downloads: |
Abstract page: | 142 | Full-text PDF : | 57 |
|