Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 112, Pages 167–171 (Mi znsl3936)  

This article is cited in 5 scientific papers (total in 5 papers)

An isolation theorem for decomposable forms of purely real algebraic fields of degree $n\ge3$

B. F. Skubenko
Full-text PDF (214 kB) Citations (5)
Abstract: Let $M$ be a complete module of a purely algebraic field of degree $n\ge3$, let $\Lambda$ be the lattice of this module and let $F(X)$ be its form. By $\Lambda_\varepsilon$ we denote any lattice for which we have $\Lambda_\varepsilon=\tau\Lambda$, where $\tau$ is a nondiagonal matrix satisfying the condition $\|\tau-I\|\le\varepsilon$, $I$ being the identity matrix. The complete collection of such lattices will be denoted by $\{\Lambda_\varepsilon\}$. To each lattice $\Lambda_\varepsilon$ we associate in a natural manner the decomposable form $F_\varepsilon(X)$. The complete collection of forms, corresponding to the set $\{\Lambda_\varepsilon\}$, will be denoted by $\{F_\varepsilon\}$. It is shown that for any given arbitrarily small interval $(N-\eta,N+\eta)$, one can select an $\varepsilon$ one can select an $F_\varepsilon(X)$ from $\{F_\varepsilon\}$ there exists an integral vector $X_0$ such that $N-\eta<F_\varepsilon(X_0)<N+\eta$.
English version:
Journal of Soviet Mathematics, 1984, Volume 25, Issue 2, Pages 1089–1092
DOI: https://doi.org/10.1007/BF01680832
Bibliographic databases:
Document Type: Article
UDC: 511.9
Language: Russian
Citation: B. F. Skubenko, “An isolation theorem for decomposable forms of purely real algebraic fields of degree $n\ge3$”, Analytical theory of numbers and theory of functions. Part 4, Zap. Nauchn. Sem. LOMI, 112, "Nauka", Leningrad. Otdel., Leningrad, 1981, 167–171; J. Soviet Math., 25:2 (1984), 1089–1092
Citation in format AMSBIB
\Bibitem{Sku81}
\by B.~F.~Skubenko
\paper An isolation theorem for decomposable forms of purely real algebraic fields of degree $n\ge3$
\inbook Analytical theory of numbers and theory of functions. Part~4
\serial Zap. Nauchn. Sem. LOMI
\yr 1981
\vol 112
\pages 167--171
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3936}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=644002}
\zmath{https://zbmath.org/?q=an:0534.10015|0487.10018}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 25
\issue 2
\pages 1089--1092
\crossref{https://doi.org/10.1007/BF01680832}
Linking options:
  • https://www.mathnet.ru/eng/znsl3936
  • https://www.mathnet.ru/eng/znsl/v112/p167
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024