Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 322, Pages 63–75 (Mi znsl393)  

On an exponential sum

P. Ding

Simon Fraser University
References:
Abstract: Let $p$ be a prime number, $n$ be a positive integer, and $f(x) = ax^k+bx$. We put
$$ S(f,p^n)=\sum_{x=1}^{p^n}e\biggl(\frac{f(x)}{p^n}\biggr), $$
where $e(t)=\exp(2\pi it)$. This special exponential sum has been widely studied in connection with Waring's problem. We write $n$ in the form $n=Qk+r$, where $0\le r\le k-1$ and $Q\ge 0$. Let $\alpha=\operatorname{ord}_p(k)$, $\beta=\operatorname{ord}_p(k-1)$, and $\theta=\operatorname{ord}_p(b)$. We define
$$ \mathcal Q=\begin{cases} \dfrac{\theta-\alpha}{k-1},&\text{если }\theta\ge\alpha, \\ 0,&\text{иначе}, \end{cases} $$
and $J=[\zeta]$. Moreover, we denote $V=\min(Q,J)$. Improving the preceding result, we establish the theorem.
Theorem. Let $k\ge 2$ and $n\ge 2$. If $p>2$, then
$$ |S(f,p^n)|\le\begin{cases} p^{\frac{1-V}2}p^{\frac n2}(b,p^n)^{\frac12},&\text{if }n\equiv 1\pmod k, \\ (k-1,p-1)p^{-\frac V2}p^{\frac{\min(\alpha,1)}2}p^{\min(\frac\beta2,\frac n2-1)}p^{\frac n2}(b,p^n)^{\frac12}, &\text{if }n\not\equiv 1\pmod k. \end{cases} $$
An example showing that this result is best possible is given. Bibliography: 15 titles.
Received: 03.02.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 2, Pages 4645–4653
DOI: https://doi.org/10.1007/s10958-006-0260-1
Bibliographic databases:
UDC: 519.68
Language: English
Citation: P. Ding, “On an exponential sum”, Proceedings on number theory, Zap. Nauchn. Sem. POMI, 322, POMI, St. Petersburg, 2005, 63–75; J. Math. Sci. (N. Y.), 137:2 (2006), 4645–4653
Citation in format AMSBIB
\Bibitem{Din05}
\by P.~Ding
\paper On an exponential sum
\inbook Proceedings on number theory
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 322
\pages 63--75
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl393}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2138451}
\zmath{https://zbmath.org/?q=an:1084.11049}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 2
\pages 4645--4653
\crossref{https://doi.org/10.1007/s10958-006-0260-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746124599}
Linking options:
  • https://www.mathnet.ru/eng/znsl393
  • https://www.mathnet.ru/eng/znsl/v322/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024