|
Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 112, Pages 71–74
(Mi znsl3929)
|
|
|
|
Isomorphism of one-place functors $\operatorname{Ext}$
M. B. Zvyagina
Abstract:
Let $\Lambda$ be an associative ring with identity. One considers the category of left (unitary) $\Lambda$-modules $\mathfrak M$ and also the contravariant and the covariant functors $\operatorname{Ext}^1_\Lambda(\ ,A)$ and $\operatorname{Ext}^1_\Lambda(A,\ )$: $_\Lambda\mathfrak M\to{}_\mathbb Z\mathfrak M$. One proves the following results: (1) If the homomorphism of $\Lambda$-modules $A\to B$ induces an isomorphism $\operatorname{Ext}^1_\Lambda(\ ,A)\to\operatorname{Ext}^1_\Lambda(\ ,B)$, then there exist injective $\Lambda$-modules $J_1$ and $J_2$ such that $A\oplus J_1\approx B\oplus J_2$. (2) Every functorial morphism $\operatorname{Ext}^1_\Lambda(\ ,A)\to\operatorname{Ext}^1_\Lambda(\ ,B)$ induces a certain homomorphism of $\Lambda$-modules $A\to B$. One also obtains a dual result.
Citation:
M. B. Zvyagina, “Isomorphism of one-place functors $\operatorname{Ext}$”, Analytical theory of numbers and theory of functions. Part 4, Zap. Nauchn. Sem. LOMI, 112, "Nauka", Leningrad. Otdel., Leningrad, 1981, 71–74; J. Soviet Math., 25:2 (1984), 1020–1023
Linking options:
https://www.mathnet.ru/eng/znsl3929 https://www.mathnet.ru/eng/znsl/v112/p71
|
Statistics & downloads: |
Abstract page: | 84 | Full-text PDF : | 34 |
|