|
Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 112, Pages 5–25
(Mi znsl3924)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$
V. A. Bykovskii
Abstract:
The results of I. M. Vinogradov and van der Corput regarding the number of integral points under a curve are generalized to the case when on the integral points $(a_1,a_2)$ one imposes the additional condition $a_1a_2\equiv l(\operatorname{mod}q)$. A corollary is an asymptotic formula for
$$
\sum^p_{z=1}\tau(z^2+D)
$$
with the remainder $O(P^{5/6+\varepsilon})$ instead of Hooley's estimate $O(P^{8/9+\varepsilon})$. It is shown how with the aid of the spectral theory of automorphic functions one can bring the estimate to $O(P^{2/3+\varepsilon})$.
Citation:
V. A. Bykovskii, “Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$”, Analytical theory of numbers and theory of functions. Part 4, Zap. Nauchn. Sem. LOMI, 112, "Nauka", Leningrad. Otdel., Leningrad, 1981, 5–25; J. Soviet Math., 25:2 (1984), 975–988
Linking options:
https://www.mathnet.ru/eng/znsl3924 https://www.mathnet.ru/eng/znsl/v112/p5
|
Statistics & downloads: |
Abstract page: | 382 | Full-text PDF : | 76 |
|