Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1981, Volume 112, Pages 5–25 (Mi znsl3924)  

This article is cited in 9 scientific papers (total in 9 papers)

Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$

V. A. Bykovskii
Full-text PDF (707 kB) Citations (9)
Abstract: The results of I. M. Vinogradov and van der Corput regarding the number of integral points under a curve are generalized to the case when on the integral points $(a_1,a_2)$ one imposes the additional condition $a_1a_2\equiv l(\operatorname{mod}q)$. A corollary is an asymptotic formula for
$$ \sum^p_{z=1}\tau(z^2+D) $$
with the remainder $O(P^{5/6+\varepsilon})$ instead of Hooley's estimate $O(P^{8/9+\varepsilon})$. It is shown how with the aid of the spectral theory of automorphic functions one can bring the estimate to $O(P^{2/3+\varepsilon})$.
English version:
Journal of Soviet Mathematics, 1984, Volume 25, Issue 2, Pages 975–988
DOI: https://doi.org/10.1007/BF01680820
Bibliographic databases:
Document Type: Article
UDC: 511.33
Language: Russian
Citation: V. A. Bykovskii, “Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$”, Analytical theory of numbers and theory of functions. Part 4, Zap. Nauchn. Sem. LOMI, 112, "Nauka", Leningrad. Otdel., Leningrad, 1981, 5–25; J. Soviet Math., 25:2 (1984), 975–988
Citation in format AMSBIB
\Bibitem{Byk81}
\by V.~A.~Bykovskii
\paper Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$
\inbook Analytical theory of numbers and theory of functions. Part~4
\serial Zap. Nauchn. Sem. LOMI
\yr 1981
\vol 112
\pages 5--25
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3924}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=643990}
\zmath{https://zbmath.org/?q=an:0534.10043|0483.10045}
\transl
\jour J. Soviet Math.
\yr 1984
\vol 25
\issue 2
\pages 975--988
\crossref{https://doi.org/10.1007/BF01680820}
Linking options:
  • https://www.mathnet.ru/eng/znsl3924
  • https://www.mathnet.ru/eng/znsl/v112/p5
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024